Méthode de NEWTON

[ROUVIÈRE, p 152]

ÉNONCÉ:

Théorème: Soit $f:[c,d] \longrightarrow \mathbb{R}$ une fonction de classe C^2 , c < d, f(c) < 0 < f(d) et f' > 0 sur [c,d]. Alors:

1. Il existe $\alpha > 0$ tel que pour tout $x_0 \in I = [a - \alpha, a + \alpha]$, la suite $(x_n)_{n \in \mathbb{N}}$ définie par :

$$x_{n+1} = F(x_n), \quad F(x) = x - \frac{f(x)}{f'(x)}$$

a une convergence quadratique vers a dans I, où $a \in]c,d[$ est l'unique réel sur]c,d[tel que f(a)=0.

2. Si de plus f'' > 0 sur]a, d], l'intervalle]a, d] est F-stable et pour tout $x_0 \in]a, d]$, la suite $(x_n)_{n \in \mathbb{N}}$ est alors strictement décroissante avec :

$$x_{n+1} - a \sim \frac{1}{2} \frac{f''(a)}{f(a)} (x_n - a)^2$$
 lorque $n \to +\infty$

DÉVELOPPEMENT:

1. La fonction f étant continue sur [c, d] et croissant strictement de f(c) < 0 à f(d) > 0, donc s'annule en un unique point $a \in]c, d[$.

Comme f(a) = 0, on a, pour $x \in [c, d]$:

$$F(x) - a = x - a - \frac{f(x) - f(a)}{f'(x)}$$
$$= \frac{f(a) - f(x) - (a - x)f'(x)}{f'(x)}$$

Comme f est de classe C^2 , la formule de TAYLOR-LAGRANGE appliqué sur [a,x] donne l'existence d'un $z \in]a,x[$ tel que $f(a) = f(x) + (a-x)f'(x) + \frac{(a-x)^2}{2}f''(z)$. Ainsi, on a pour $x \in [c,d]$:

$$F(x) - a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^2$$

En prenant la constante $C \in \mathbb{R}$ définie par :

$$C = \frac{\max_{x \in [c,d]} |f''(x)|}{2\min_{x \in [c,d]} f'(x)}$$

On obtient, pour $x \in [c, d]$:

$$|F(x) - a| \le C|x - a|^2$$

Soit $\alpha > 0$ tel que $C\alpha < 1$ et $I = [a - \alpha, a + \alpha] \subset [c, d]$. Alors pour $x \in I$, on a $|F(x) - a| \le C\alpha^2 < \alpha$ d'où la F-stabilité de I. Ainsi, en prenant $x_0 \in I$, on a $x_n \in I$ pour $n \ge 0$ et

$$|x_{n+1} - a| = |F(x_n) - a| \le C|x_n - a|^2$$

d'où:

$$C|x_n - a| \le (C|x_0 - a|)^{2n} \le (\underline{C\alpha})^{2n}$$

d'où le résultat.

2. Pour $a \le x \le d$, on a f'(x) > 0 et $f(x) \ge 0$ d'où :

$$F(x) = x - \underbrace{\frac{f(x)}{f'(x)}}_{>0} \le x$$

avec inégalité stricte si x>a. De plus, par le premier point, on a :

$$F(x) - a = \frac{1}{2} \frac{f''(z)}{f'(x)} (x - a)^2 \ge 0$$

avec inégalité stricte si x > a (car f'' > 0 sur [c, d]).

Ainsi, l'intervalle I = [a, d] est F-stable et pour $a < x_0 \le d$, les itérés x_n vérifient aussi $a < x_n \le d$ et forment une suite strictement décroissante (si $x_0 = a$, la suite est constante). La suite $(x_n)_{n \in \mathbb{N}}$ admet donc une limite ℓ vérifiant $F(\ell) = \ell$ donc $f(\ell) = 0$ et donc $\ell = a$. De plus, si $a < x_0 \le d$, on a $x_n > a$ pour tout n et :

$$\frac{x_{n+1} - a}{(x_n - a)^2} = \frac{1}{2} \frac{f''(z_n)}{f'(x_n)}$$

avec $a < z_n < x_n$. La fraction tend donc vers $\frac{f''(a)}{2f'(a)}$ d'où l'équivalent souhaité.

Remarques:

- Le développement est relativement court si maîtrisé : on n'hésitera pas à rendre le développement le plus clair possible, quitte à détailler.
- Il faut schématiser ce que l'on fait.
- Cette méthode est généralisable en dimension supérieure : de façon analogue, on "remplace" la dérivée par le jacobien (il faut avoir un exemple clair en tête pour la dimension 2 par exemple).

2